4 months ago|
AI
Architecting an AI-Powered Customer Support Chatbot
AI-Powered Customer Support Chatbot
Example: Architecting an AI-Powered Customer Support Chatbot
1. Objective
Design an AI chatbot to automate customer support for a financial services firm, capable of handling queries about account balances, transactions, loan eligibility, and FAQs.
2. Architecture Overview
pgsql
CopyEdit
+--------------------------+
| Customer Interfaces |
| (Web, Mobile, WhatsApp) |
+-----------+--------------+
|
v
+---------------+----------------+
| API Gateway / Router |
+---------------+----------------+
|
+-----------------+------------------+
| |
v v
+--------------------------+ +-------------------------------+
| Intent Recognition (NLP)| | Authentication Service |
| (LLM, Rasa, Dialogflow) | | (OAuth2, JWT, Identity Server)|
+------------+-------------+ +-------------------------------+
|
v
+-------------------------------+
| Dialogue Manager / Orchestrator |
| (State Tracking, Context Mgmt) |
+-------------------------------+
|
v
+------------------------------+
| Business Logic Layer |
| (Loan, KYC, Payments Modules)|
+------------------------------+
|
v
+-----------------------------+
| Data Access Layer |
| (Banking DBs, User History) |
+-----------------------------+
3. Technology Stack
- Frontend: React (web), Flutter (mobile), WhatsApp Business API
- API Gateway: AWS API Gateway / NGINX
- NLP Layer: OpenAI GPT-4, Rasa NLU, or Google Dialogflow
- Authentication: Auth0 / AWS Cognito
- Orchestration: Node.js with Redis for session storage
- Business Logic: Microservices using Python (FastAPI)
- Data Layer: PostgreSQL, Redis (cache), MongoDB (logs)
4. Key Features
- Multi-language support using multilingual models
- Human handoff system integrated with Zendesk
- Real-time transaction status lookup
- Adaptive learning from customer feedback
5. Considerations
- Security: Encrypt sensitive data, follow GDPR/PCI DSS
- Scalability: Use serverless functions or containers (Kubernetes)
- Monitoring: Prometheus, Grafana, Elastic Stack for logging
- Performance: Use embeddings or vector databases (like Pinecone) for context memory