8 hours ago|
AI
Architecting an AI-Powered Customer Support Chatbot
AI-Powered Customer Support Chatbot

Example: Architecting an AI-Powered Customer Support Chatbot
1. Objective
Design an AI chatbot to automate customer support for a financial services firm, capable of handling queries about account balances, transactions, loan eligibility, and FAQs.
2. Architecture Overview
pgsql CopyEdit +--------------------------+ | Customer Interfaces | | (Web, Mobile, WhatsApp) | +-----------+--------------+ | v +---------------+----------------+ | API Gateway / Router | +---------------+----------------+ | +-----------------+------------------+ | | v v +--------------------------+ +-------------------------------+ | Intent Recognition (NLP)| | Authentication Service | | (LLM, Rasa, Dialogflow) | | (OAuth2, JWT, Identity Server)| +------------+-------------+ +-------------------------------+ | v +-------------------------------+ | Dialogue Manager / Orchestrator | | (State Tracking, Context Mgmt) | +-------------------------------+ | v +------------------------------+ | Business Logic Layer | | (Loan, KYC, Payments Modules)| +------------------------------+ | v +-----------------------------+ | Data Access Layer | | (Banking DBs, User History) | +-----------------------------+
3. Technology Stack
- Frontend: React (web), Flutter (mobile), WhatsApp Business API
- API Gateway: AWS API Gateway / NGINX
- NLP Layer: OpenAI GPT-4, Rasa NLU, or Google Dialogflow
- Authentication: Auth0 / AWS Cognito
- Orchestration: Node.js with Redis for session storage
- Business Logic: Microservices using Python (FastAPI)
- Data Layer: PostgreSQL, Redis (cache), MongoDB (logs)
4. Key Features
- Multi-language support using multilingual models
- Human handoff system integrated with Zendesk
- Real-time transaction status lookup
- Adaptive learning from customer feedback
5. Considerations
- Security: Encrypt sensitive data, follow GDPR/PCI DSS
- Scalability: Use serverless functions or containers (Kubernetes)
- Monitoring: Prometheus, Grafana, Elastic Stack for logging
- Performance: Use embeddings or vector databases (like Pinecone) for context memory